Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(6): 375, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365177

RESUMO

Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment caused by dysfunction of inner hair cells, ribbon synapses, spiral ganglion neurons and/or the auditory nerve itself. Approximately 1/7000 newborns have abnormal auditory nerve function, accounting for 10%-14% of cases of permanent hearing loss in children. Although we previously identified the AIFM1 c.1265 G > A variant to be associated with ANSD, the mechanism by which ANSD is associated with AIFM1 is poorly understood. We generated induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) via nucleofection with episomal plasmids. The patient-specific iPSCs were edited via CRISPR/Cas9 technology to generate gene-corrected isogenic iPSCs. These iPSCs were further differentiated into neurons via neural stem cells (NSCs). The pathogenic mechanism was explored in these neurons. In patient cells (PBMCs, iPSCs, and neurons), the AIFM1 c.1265 G > A variant caused a novel splicing variant (c.1267-1305del), resulting in AIF p.R422Q and p.423-435del proteins, which impaired AIF dimerization. Such impaired AIF dimerization then weakened the interaction between AIF and coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4). On the one hand, the mitochondrial import of ETC complex subunits was inhibited, subsequently leading to an increased ADP/ATP ratio and elevated ROS levels. On the other hand, MICU1-MICU2 heterodimerization was impaired, leading to mCa2+ overload. Calpain was activated by mCa2+ and subsequently cleaved AIF for its translocation into the nucleus, ultimately resulting in caspase-independent apoptosis. Interestingly, correction of the AIFM1 variant significantly restored the structure and function of AIF, further improving the physiological state of patient-specific iPSC-derived neurons. This study demonstrates that the AIFM1 variant is one of the molecular bases of ANSD. Mitochondrial dysfunction, especially mCa2+ overload, plays a prominent role in ANSD associated with AIFM1. Our findings help elucidate the mechanism of ANSD and may lead to the provision of novel therapies.


Assuntos
Fator de Indução de Apoptose , Cálcio , Células-Tronco Pluripotentes Induzidas , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Criança , Humanos , Recém-Nascido , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo
2.
J Zhejiang Univ Sci B ; 24(2): 172-184, 2023 Feb 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36751702

RESUMO

Auditory neuropathy spectrum disorder (ANSD) represents a variety of sensorineural deafness conditions characterized by abnormal inner hair cells and/or auditory nerve function, but with the preservation of outer hair cell function. ANSD represents up to 15% of individuals with hearing impairments. Through mutation screening, bioinformatic analysis and expression studies, we have previously identified several apoptosis-inducing factor (AIF) mitochondria-associated 1 (AIFM1) variants in ANSD families and in some other sporadic cases. Here, to elucidate the pathogenic mechanisms underlying each AIFM1 variant, we generated AIF-null cells using the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and constructed AIF-wild type (WT) and AIF-mutant (mut) (p.|T260A, p.|R422W, and p.|R451Q) stable transfection cell lines. We then analyzed AIF structure, coenzyme-binding affinity, apoptosis, and other aspects. Results revealed that these variants resulted in impaired dimerization, compromising AIF function. The reduction reaction of AIF variants had proceeded slower than that of AIF-WT. The average levels of AIF dimerization in AIF variant cells were only 34.5%|‒|49.7% of that of AIF-WT cells, resulting in caspase-independent apoptosis. The average percentage of apoptotic cells in the variants was 12.3%|‒|17.9%, which was significantly higher than that (6.9%|‒|7.4%) in controls. However, nicotinamide adenine dinucleotide (NADH) treatment promoted the reduction of apoptosis by rescuing AIF dimerization in AIF variant cells. Our findings show that the impairment of AIF dimerization by AIFM1 variants causes apoptosis contributing to ANSD, and introduce NADH as a potential drug for ANSD treatment. Our results help elucidate the mechanisms of ANSD and may lead to the provision of novel therapies.


Assuntos
Fator de Indução de Apoptose , NAD , Humanos , Fator de Indução de Apoptose/química , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , NAD/metabolismo , Dimerização , Apoptose
3.
iScience ; 25(11): 105275, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36300003

RESUMO

Neurofibromatosis type 2 is an autosomal dominant multiple neoplasia syndrome and is usually caused by mutations in the neurofibromin 2 (NF2) gene, which encodes a tumor suppressor and initiates the Hippo pathway. However, the mechanism by which NF2 functions in the Hippo pathway isn't fully understood. Here we identified a NF2 c.770-784del mutation from a neurofibromatosis type 2 family. MD simulations showed that this mutation significantly changed the structure of the F3 module of the NF2-FERM domain. Functional assays indicated that the NF2 c.770-784del variant formed LLPS in the cytoplasm with LATS to restrain LATS plasma membrane localization and inactivated the Hippo pathway. Besides, this deletion partly caused a skipping of exon 8 and reduced the protein level of NF2, collectively promoting proliferation and tumorigenesis of meningeal cells. We identified an unrecognized mechanism of LLPS and splicing skipping for the NF2-induced Hippo pathway, which provided new insight into the pathogenesis of neurofibromatosis type 2.

4.
Front Genet ; 13: 736988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309143

RESUMO

Background: 46,XY disorders/differences of sex development (46,XY DSD) are congenital conditions that result from abnormal gonadal development (gonadal dysgenesis) or abnormalities in androgen synthesis or action. During early embryonic development, several genes are involved in regulating the initiation and maintenance of testicular or ovarian-specific pathways. Recent reports have shown that MAP3K1 genes mediate the development of the 46,XY DSD, which present as complete or partial gonadal dysgenesis. Previous functional studies have demonstrated that some MAP3K1 variants result in the gain of protein function. However, data on possible mechanisms of MAP3K1 genes in modulating protein functions remain scant. Methods: This study identified a Han Chinese family with the 46,XY DSD. To assess the history and clinical manifestations for the 46,XY DSD patients, the physical, operational, ultra-sonographical, pathological, and other examinations were performed for family members. Variant analysis was conducted using both trio whole-exome sequencing (trio WES) and Sanger sequencing. On the other hand, we generated transiently transfected testicular teratoma cells (NT2/D1) and ovary-derived granular cells (KGN), with mutant or wild-type MAP3K1 gene. We then performed functional assays such as determination of steady-state levels of gender related factors, protein interaction and luciferase assay system. Results: Two affected siblings were diagnosed with 46,XY DSD. Our analysis showed a missense c.556A > G/p.R186G variant in the MAP3K1 gene. Functional assays demonstrated that the MAP3K1R186G variant was associated with significantly decreased affinity to ubiquitin (Ub; 43-49%) and increased affinity to RhoA, which was 3.19 ± 0.18 fold, compared to MAP3K1. The MAP3K1R186G led to hyperphosphorylation of p38 and GSK3ß, and promoted hyperactivation of the Wnt4/ß-catenin signaling. In addition, there was increased recruitment of ß-catenin into the nucleus, which enhanced the expression of pro-ovarian transcription factor FOXL2 gene, thus contributing to the 46,XY DSD. Conclusion: Our study identified a missense MAP3K1 variant associated with 46,XY DSD. We demonstrated that MAP3K1R186G variant enhances binding to the RhoA and improves its own stability, resulting in the activation of the Wnt4/ß-catenin/FOXL2 pathway. Taken together, these findings provide novel insights into the molecular mechanisms of 46,XY DSD and promotes better clinical evaluation.

5.
Front Genet ; 10: 996, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695722

RESUMO

Background: Congenital adrenal hyperplasia (CAH) encompasses a group of autosomal recessive diseases characterized by enzyme deficiencies, within steroid hormone anabolism, which lead to disorders in cortisol synthesis. The 17α-hydroxylase/17,20-lyase deficiency (17-OHD) is an uncommon form of CAH caused by variants in the CYP17A1 gene. Aims: We report a novel compound heterozygous CYP17A1 variant and its association with the pathogenesis of 17-OHD. Methods: The patient was assessed for medical history, clinical manifestations, physical examination, laboratory examination, karyotype analysis, and adrenal computed tomography. Mutation screening was conducted using whole-exome sequencing (WES) and Sanger sequencing. The wild-type and mutant CYP17A1 complementary DNAs (cDNAs) were amplified and cloned into a pcDNA3.1(+) vector. These plasmids were transfected transiently into HEK-293T cells. Quantitative PCR and Western blotting analysis were performed to measure the expression level of P450c17. An enzymatic activity assay was conducted to measure the content of 17-hydroxyprogesterone (17-OHP) and dehydroepiandrosterone (DHEA) in medium using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: The proband was characterized by 17-OHD with rhabdomyolysis, hypokalemia, and adrenal insufficiency. Novel compound heterozygous variants of the CYP17A1 gene (c.1304T > C/p.Phe435Ser and c.1228delG/p.Asp410Ilefs*9) were identified. The enzymatic activity assay revealed that this variant resulted in a complete deficiency of 17α-hydroxylase and 17,20-lyase activity. This was consistent with the hormonal characteristics of the proband's blood. Conclusions: These results suggest that the compound heterozygous variant of c.1304T > C and c.1228delG of the CYP17A1 gene can lead to 17-OHD. Our findings thus provide a novel insight into the clinical evaluations and molecular basis of 17-OHD.

6.
Cell Biosci ; 9: 101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890150

RESUMO

BACKGROUND: Drosophila Prominin-like is a homolog of mammalian CD133, which is recognized as a biomarker for stem cells. The interacting proteins of CD133 and their biological functions remain elusive. RESULTS: In this study, we using yeast two-hybrid assays, GST pull-down assay and co-immunoprecipitation (Co-IP) methods found that Drosophila Prominin-like interacts with ND20, a subunit of mitochondrial respiratory complex I. Bioinformatics analysis suggests that Prominin-like is a six-transmembrane glycoprotein which localizes on cellular membranes. Immunostaining and mitochondrial fractionation indicate that Drosophila Prominin-like could localize in the mitochondria. The knockdown of prominin-like in S2 cells resulted in transient mitochondrial dysfunctions as evidenced by reduced ATP production, elevated ROS generation and an accompanied reduction in mitochondrial proteins. Mitochondrial dysfunctions were detected in aged prominin-like mutant flies. CONCLUSION: Our data indicates that Prominin-like acts to maintain mitochondrial function through its interaction with ND20 which, itself, is active in the mitochondrial electron transport chain. Our study provides insights into a novel molecular mechanism of Drosophila prominin-like and suggests a similar function of CD133 in mammals.

7.
Mitochondrion ; 46: 313-320, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30196098

RESUMO

Hypertrophic cardiomyopathy (HCM), affecting approximately 1 in 500 in the general population, is the most prominent cause of sudden heart disease-related mortality in the young. Mitochondrial DNA (mtDNA) mutations are among the primary causes of HCM. We previously identified a novel m.2336T>C homoplasmic mutation in the mitochondrial 16S rRNA gene (MT-RNR2) in a Chinese maternally inherited HCM family. However, the molecular mechanisms by which m.2336T>C mutation contributes to HCM remain elusive. Here we generated transferring mitochondria cell lines (cybrids) with a constant nuclear background by transferring mitochondria from immortalized lymphoblastoid cell lines carrying the HCM-associated m.2336T>C mutation into human mtDNA-less (ρ°) cells. Functional assays showed a decreased stability for 16S rRNA and the steady-state levels of its binding proteins in the mutant cybrids. This mutation impaired the mitochondrial translation capacity and resulted in many mitochondrial dysfunctions, including elevation of ROS generation, reduction of ATP production and impairment of mitochondrial membrane potential. Moreover, the mutant cybrids had poor physiological status and decreased survival ability. These results confirm that the m.2336T>C mutation leads to mitochondrial dysfunction and strongly suggest that this mutation may play a role in the pathogenesis of HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , DNA Mitocondrial/genética , Mitocôndrias/patologia , Mutação Puntual , RNA Ribossômico 16S/genética , Sobrevivência Celular , Metabolismo Energético , Saúde da Família , Humanos , Mitocôndrias/genética , Biossíntese de Proteínas , Estabilidade de RNA , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...